11 research outputs found

    Study on research mode of smart safety outfits system for children

    Get PDF
    According to the special characteristics of children’s body and mind and the concept of human–computer interaction, the research and development model of children’s intelligent safety clothing is explored and a A practical research model. Based on the multi–dimensional needs of consumers for children’s clothing and the performance of smart components, we explore the combination of smart wearable equipment and children’s safety clothing, and propose a design process architecture that takes into account function and aesthetics. Through the analysis of the connection technology between smart clothing and mobile terminals, we propose the idea from single interaction to multi–device co–connection, and establish a multi–interaction smart clothing based on the optimal allocation of energy and high. Through the analysis of the connection technology between smart clothing and mobile terminals, we propose the idea of moving from single interaction to multi–device co–connection, and establish the R&D process of multi–interaction smart wearable devices based on optimal energy allocation and efficient information transmission

    Small intestinal microbiota composition altered in obesity-T2DM mice with high salt fed

    No full text
    Abstract Obesity has become a global concern because of increasing the risk of many diseases. Alterations in human gut microbiota have been proven to be associated with obesity, yet the mechanism of how the microbiota are altered by high salt diet (HSD) remains obscure. In this study, the changes of Small Intestinal Microbiota (SIM) in obesity-T2DM mice were investigated. High-throughput sequencing was applied for the jejunum microbiota analysis. Results revealed that high salt intake (HS) could suppress the body weight (B.W.) in some extent. In addition, significant T2DM pathological features were revealed in high salt-high food diet (HS-HFD) group, despite of relatively lower food intake. High-throughput sequencing analysis indicated that the F/B ratio in HS intake groups increased significantly (P < 0.001), whereas beneficial bacteria, such as lactic acid or short chain fatty acid producing bacteria, were significantly decreased in HS-HFD group (P < 0.01 or P < 0.05). Furthermore, Halorubrum luteum were observed in small intestine for the first time. Above results preliminary suggested that in obesity-T2DM mice, high dietary salt could aggravate the imbalance of composition of SIM to unhealthy direction

    Different Lipopolysaccharide Branched-Chain Amino Acids Modulate Porcine Intestinal Endogenous β‑Defensin Expression through the Sirt1/ERK/90RSK Pathway

    No full text
    Nutritional induction of endogenous antimicrobial peptide expression is considered a promising approach to inhibit the outgrowth and infection of pathogenic microbes in mammals. The present study investigated possible regulation of porcine epithelial β-defensins in response to branched-chain amino acids (BCAA) in vivo and in vitro. BCAA treatment increased relative mRNA expression of jejunal and ileal β-defensins in weaned piglets. In IPEC-J2 cells, isoleucine, leucine, and valine could stimulate β-defensin expression, possibly associated with stimulation of ERK1/2 phosphorylation. Inhibition of Sirt1 and ERK completely blocked the activation of ERK and 90RSK protein by isoleucine, simultaneously decreasing defensin expression. BCAA stimulate expression of porcine intestinal epithelial β-defensins with isoleucine the most, potent possibly through activation of the Sirt1/ERK/90RSK signaling pathway. The β-defensins regulation of lipopolysaccharide was related with an ERK-independent pathway. BCAA modulation of endogenous defensin might be a promising approach to enhance disease resistance and intestinal health in young animals and children
    corecore